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Abstract. We present a systematic method for reducing an arbitrary one-loop N -point massless Feynman
integral with generic 4-dimensional momenta to a set comprised of eight fundamental scalar integrals: six
box integrals in D = 6, a triangle integral in D = 4, and a general two-point integral in D space-time
dimensions. All the divergences present in the original integral are contained in the general two-point
integral and associated coefficients. The problem of vanishing of the kinematic determinants has been
solved in an elegant and transparent manner. Being derived with no restrictions regarding the external
momenta, the method is completely general and applicable for arbitrary kinematics. In particular, it applies
to the integrals in which the set of external momenta contains subsets comprised of two or more collinear
momenta, which are unavoidable when calculating one-loop contributions to the hard-scattering amplitude
for exclusive hadronic processes at large-momentum transfer in PQCD. The iterative structure makes it
easy to implement the formalism in an algebraic computer program.

1 Introduction

Scattering processes have played a crucial role in establish-
ing the fundamental interactions of nature. They represent
the most important source of information on short-distance
physics. With increasing energy, multiparticle events are
becoming more and more dominant. Thus, in testing vari-
ous aspects of QCD, the high-energy scattering processes,
both exclusive and inclusive, in which the total number of
particles (partons) in the initial and final states is N ≥ 5,
have recently become increasingly important.

Owing to the well-known fact that the LO predictions
in perturbative QCD (PQCD) do not have much predictive
power, the inclusion of higher-order corrections is essential
for many reasons. In general, higher-order corrections have
a stabilizing effect, reducing the dependence of the LO
predictions on the renormalization and factorization scales
and the renormalization scheme. Therefore, to achieve a
complete confrontationbetween theoretical predictions and
experimental data, it is very important to know the size
of radiative corrections to the LO predictions.

Obtaining radiative corrections requires the evaluation
of one-loop integrals arising from the Feynman diagram
approach. With the increasing complexity of the process
under consideration, the calculation of radiative corrections
becomes more and more tedious. Therefore, it is extremely
useful to have an algorithmic procedure for these calcula-
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tions which is computerizable and leads to results which
can be easily and safely evaluated numerically.

The case of Feynman integrals with massless internal
lines is of special interest, because one often deals with
either really massless particles (gluons) or particles whose
masses can be neglected in high-energy processes (quarks).
Owing to the fact that these integrals contain IR diver-
gences (both soft and collinear), they need to be evaluated
in an arbitrary number of space-time dimensions. As it is
well known, in calculating Feynman diagrams mainly three
difficulties arise: tensor decomposition of integrals, reduc-
tion of scalar integrals to several basic scalar integrals and
the evaluation of a set of basic scalar integrals.

Considerable progress has recently been made in devel-
oping efficient approaches for calculating one-loop Feyn-
man integrals with a large number (N ≥ 5) of external
lines [1–10]. Various approaches have been proposed for
reducing the dimensionally regulated (N ≥ 5)-point ten-
sor integrals to a linear combination of N - and lower-point
scalar integrals multiplied by tensor structures made from
the metric tensor gµν and external momenta [1,2,5,7,10].
It has also been shown that the general (N > 5)-point
scalar one-loop integral can recursively be represented as a
linear combination of (N − 1)-point integrals provided the
external momenta are kept in four dimensions [3–8]. Conse-
quently, all scalar integrals occurring in the computation
of an arbitrary one-loop (N ≥ 5)-point integral can be
reduced to a sum over a set of basic scalar box (N = 4) in-
tegrals with rational coefficients depending on the external
momenta and the dimensionality of space-time. Despite the
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considerable progress, the developed methods still cannot
be applied to all cases of practical interest. The problem
is related to vanishing of various relevant kinematic deter-
minants.

As far as the calculation of one-loop (N > 5)-point
massless integrals is concerned, the most complete and
systematic method is presented in [7]. It does not, how-
ever, apply to all cases of practical interest. Namely, being
obtained for the non-exceptional external momenta it can-
not be, for example, applied to the integrals in which the set
of external momenta contains subsets comprised of two or
three collinear on-shell momenta. The integrals of this type
arise when performing the leading-twist NLO analysis of
hadronic exclusive processes at large-momentum transfer
in PQCD.

With no restrictions regarding the external kinematics,
in this paper we formulate an efficient, systematic and
completely general method for reducing an arbitrary one-
loop N -point massless integral to a set of basic integrals.
Although the method is presented for the massless case,
the generalization to the massive case is straightforward.
The main difference between the massive and massless
cases manifests itself in the basic set of integrals, which
in former case is far more complex. Among the one-loop
Feynman integrals there exist both massive and massless
integrals for which the existing reduction methods break
down. The massless integrals belonging to this category
are of more practical interest at the moment, so in this
paper we concentrate on massless case.

This paper is organized as follows. Section 2 is de-
voted to introducing notation and to some preliminary
considerations. In Sect. 3, for the sake of completenes, we
briefly review a tensor decomposition method for N -point
tensor integrals which was originally obtained in [2]. In
Sect. 4 we present a procedure for reducing one-loop N -
point massless scalar integrals with generic 4-dimensional
external momenta to a fundamental set of integrals. Since
the method is closely related to the one given in [5, 6],
similarities and differences between the two are pointed
out. Being derived with no restrictions to the external mo-
menta, the method is completely general and applicable for
arbitrary kinematics. Section 5 contains considerations re-
garding the fundamental set of integrals which is comprised
of eight integrals. Section 6 is devoted to some concluding
remarks. In Appendix A we give explicit expressions for
the relevant basic massless box integrals in D = 6 space-
time dimensions. These integrals constitute a subset of the
fundamental set of scalar integrals. As an illustration of
the tensor decomposition and scalar reduction methods,
in Appendix B we evaluate a one-loop 6-point Feynman
diagram with massless internal lines, contributing to the
NLO hard-scattering amplitude for γ γ → π+ π− exclusive
reaction at large-momentum transfer in PQCD.

2 Definitions and general properties

In order to obtain one-loop radiative coorections to physical
processes in massless gauge theory, the integrals of the
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Fig. 1. One-loop N -point diagram

following type are required:

IN
µ1...µP

(D; {pi}) ≡ (
µ2)2−D/2

∫
dDl

(2π)D

lµ1 . . . lµP

A1A2 . . . AN
·
(1)

This is a rank P tensor one-loop N -point Feynman integral
with massless internal lines in D-dimensional space-time,
where pi (i = 1, 2, . . . , N) are the external momenta, l
is the loop momentum, and µ is the usual dimensional
regularization scale.

The Feynman diagram with N external lines, which
corresponds to the above integral, is shown in Fig. 1. For
the momentum assignments as shown, i.e. with all external
momenta taken to be incoming, the massless propagators
have the form

Ai ≡ (l + ri)2 + iε i = 1, . . . , N , (2)

where the momenta ri are given by ri = pi +ri−1 for i from
1 to N , and r0 = rN . The quantity iε (ε > 0) represents an
infinitesimal imaginary part, it ensures causality and after
the integration determines the correct sign of the imaginary
part of the logarithms and dilogarithms. It is customary to
choose the loop momentum in such a way that one of the
momenta ri vanishes. However, for general considerations,
such a choice is not convenient, since by doing so, one loses
the useful symmetry of the integral with respect to the
indices 1, . . . , N .

The corresponding scalar integral is

IN
0 (D; {pi}) ≡ (

µ2)2−D/2
∫

dDl

(2π)D

1
A1A2 . . . AN

. (3)

If P + D − 2N ≥ 0, the integral (1) is UV divergent. In
addition to UV divergence, the integral can contain an IR
divergence. There are two types of IR divergence: collinear
and soft. A Feynman diagram with massless particles con-
tains a soft singularity if it contains an internal gluon line
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attached to two external quark lines which are on mass-
shell. On the other hand, a diagram contains a collinear
singularity if it contains an internal gluon line attached to
an external quark line which is on mass-shell. Therefore,
a diagram containing a soft singularity at the same time
contains two collinear singularities, i.e. soft and collinear
singularities overlap.

When evaluating Feynman diagrams, one ought to reg-
ularize all divergences. Making use of the dimensional reg-
ularization method, one can simultaneously regularize UV
and IR divergences, which makes the dimensional regular-
ization method optimal for the case of massless field the-
ories.

The tensor integral (1) is, as it is seen, invariant under
the permutations of the propagators Ai, and is symmetric
with respect to the Lorentz indices µi. Lorentz covariance
allows the decomposition of the tensor integral (1) in the
form of a linear decomposition consisting of the momenta
pi and the metric tensor gµν .

3 Decomposition of tensor integrals

Various approaches have been proposed for reducing the di-
mensionally regulated N -point tensor integrals to a linear
combination of N - and lower-point scalar integrals mul-
tiplied by tensor structures made from the metric tensor
gµν and external momenta. In this section we briefly review
the derivation of the tensor reduction formula originally
obtained in [2].

For the purpose of the following discussion, let us con-
sider the tensor integral

IN
µ1...µP

(D; {νi}) ≡ (
µ2)2−D/2

∫
dDl

(2π)D

lµ1 . . . lµP

Aν1
1 Aν2

2 . . . AνN

N

,

(4)
and the corresponding scalar integral

IN
0 (D; {νi}) ≡ (

µ2)2−D/2
∫

dDl

(2π)D

1
Aν1

1 Aν2
2 . . . AνN

N

· (5)

The above integrals represent generalizations of the inte-
grals (1) and (3), in that they contain arbitrary powers
νi ∈ N of the propagators in the integrand, where {νi}
is the shorthand notation for (ν1, . . . , νN ). Also, for nota-
tional simplicity, the external momenta are omitted from
the argument of the integral.

The Feynman parameter representation of the tensor
integral IN

µ1...µP
(D; {νi}), given in (4), which is valid for

arbitrary values of N , P , ri and νi(> 0), for the values of D
for which the remaining integral is finite and the Γ -function
does not diverge, is given by

IN
µ1...µP

(D; {νi}) =
i

(4π)2
(
4πµ2)2−D/2

×
∑

k,j1,...,jN ≥0
2k+Σji=P

{
[g]k[r1]j1 . . . [rN ]jN

}
µ1...µP

× Γ (
∑

i νi − D/2 − k)
2k [

∏
i Γ (νi)]

(−1)Σiνi+P−k

×
∫ 1

0

(∏
i
dyiy

νi+ji−1
i

)
δ

(∑N

i=1
yi − 1

)

×


−

N∑
i,j=1
i<j

yiyj (ri − rj)
2 − iε




k+D/2−Σiνi

, (6)

where {[g]k[r1]j1 . . . [rN ]jN }µ1...µP
represents a symmetric

(with respect to µ1, . . . , µP ) combination of tensors, each
term of which is composed of k metric tensors and ji ex-
ternal momenta ri. Thus, for example,

{gr1}µ1µ2µ3
= gµ1µ2r1µ3 + gµ1µ3r1µ2 + gµ2µ3r1µ1 .

As for the integral representation of the corresponding
scalar integral (5) the result is of the form

IN
0 (D; {νi}) =

i
(4π)2

(
4πµ2)2−D/2 Γ

(∑N
i=1 νi − D/2

)
∏N

i=1 Γ (νi)

× (−1)ΣN
i=1νi

∫ 1

0

(
N∏

i=1

dyiy
νi−1
i

)
δ

(
N∑

i=1

yi − 1

)

×


−

N∑
i,j=1
i<j

yiyj (ri − rj)
2 − iε




D/2−ΣN
i=1νi

. (7)

Now, on the basis of (7), (6) can be written in the form

IN
µ1...µP

(D; {νi}) =
∑

k,j1,...,jN ≥0
2k+Σji=P

{
[g]k[r1]j1 . . . [rN ]jN

}
µ1...µP

×
(
4πµ2

)P−k

(−2)k

[
N∏

i=1

Γ (νi + ji)
Γ (νi)

]

× IN
0 (D + 2(P − k); {νi + ji}) . (8)

This is the desired decomposition of the dimensionally reg-
ulated N -point rank P tensor integral. It is originally ob-
tained in [2]. Based on (8), any dimensionally regulated
N -point tensor integral can be expressed as a linear com-
bination of N -point scalar integrals multiplied by tensor
structures made from the metric tensor gµν and external
momenta. Therefore, with the decomposition (8), the prob-
lem of calculating the tensor integrals has been reduced to
the calculation of the general scalar integrals.

It should be pointed out that among the tensor reduc-
tion methods presented in the literature one can find meth-
ods, see e.g. [7], which for N ≥ 5 completely avoid the terms
proportional to the metric tensor gµν . Compared with the
method expressed by (8), these reduction procedures lead
to a decomposition containing a smaller number of terms.
The methods of this type are based on the assumption that,
for N ≥ 5, one can find four linearly independent 4-vectors
forming a basis of the 4-dimensional Minkowski space, in
terms of which the metric tensor can then be expressed.
This assumption is usually not realized when analyzing
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the exclusive processes at large-momentum transfer (hard-
scattering picture) in PQCD. Thus, for example, in order
to obtain the next-to-leading order corrections to the hard-
scattering amplitude for the proton-Compton scattering,
one has to evaluate one-loop N = 8 diagrams. The set of
external momenta contains two subsets comprised of three
collinear momenta (representing the proton). The kine-
matics of the process is thus limited to the 3-dimensional
subspace. If this is the case, the best way of doing the tensor
decomposition is the one based on formula (8), regardless
of the fact that for large N the number of terms obtained
can be very large.

As is well known, the direct evaluation of the general
scalar integral (5) (i.e. (7)) represents a non-trivial prob-
lem. However, with the help of the recursion relations, the
problem can be significantly simplified in the sense that the
calculation of the original scalar integral can be reduced to
the calculation of a certain number of simpler fundamental
(basic) integrals.

4 Recursion relations for scalar integrals

Recursion relations for scalar integrals have been known
for some time [3–7]. However, as it turns out, the existing
set of relations that can be found in the literature is not
sufficient to perform the reduction procedure completely,
i.e. for all one-loop integrals appearing in practice. The
problem is related to the vanishing of various kinematic
determinants; it is manifest for the cases corresponding to
N > 6, and it is especially acute when evaluating one-
loop Feynman integrals appearing in the NLO analysis of
large-momentum transfer exclusive processes in PQCD.
As is well known, these processes are generally described
in terms of Feynman diagrams containing a large number
of external massless lines. Thus, for example, for nucleon
Compton scattering N = 8. A large number of external
lines implies a large number of diagrams to be considered,
as well as a very large number of terms generated when
performing the tensor decomposition using (8). In view of
the above, to treat the Feynman integrals (diagrams) with
a large number of external lines the use of computers is
unavoidable. This requires that the scalar reduction pro-
cedure be generally applicable. It is therefore absolutely
clear that any ambiguity or uncertainty present in the
scalar recursion relations constitutes a serious problem.
The method presented below makes it possible to perform
the reduction completely regardless of the kinematics of
the process considered and the complexity of the structure
of the contributing diagrams.

For the reason of completeness and clearness of presen-
tation and with the aim of comparison with the already
existing results, we now briefly present a few main steps of
the derivation of recursion relations. It should be pointed
out that the derivation essentially represents a variation
of the derivation originally given in [5].

Recursion relations for scalar integrals are obtained
with the help of the integration-by-parts method [5, 13,
14]. Owing to translational invariance, the dimensionally

regulated integrals satisfy the following identity:

0 ≡
∫

dDl

(2π)D

∂

∂lµ

(
z0l

µ +
∑N

i=1 zir
µ
i

Aν1
1 . . . AνN

N

)
, (9)

where zi (i = 0, . . . , N) are arbitrary constants,whileAi are
the propagators given by (2). The identity (9) is a variation
of the identity used in [5],where itwas assumed that rN = 0.
Performing the differentiation, expressing scalar products
in the numerator in terms of propagators Ai, choosing
z0 =

∑N
i=1 zi (which we assume in the following) and taking

into account the scalar integral (5), the identity (9) leads
to the relation

N∑
j=1

(
N∑

i=1

[
(rj − ri)2 + 2iε

]
zi

)
νjI

N
0 (D; {νk + δkj})

=
N∑

i,j=1

ziνjI
N
0 (D; {νk + δkj − δki})

−

D −

N∑
j=1

νj


 z0I

N
0 (D; {νk}), (10)

where δij is the Kronecker delta symbol. In arriving at (10),
it has been understood that

IN
0 (D; ν1, . . . , νl−1, 0, νl+1, . . . , νN )

≡ IN−1
0 (D; ν1, . . . , νl−1, νl+1, . . . , νN ). (11)

The relation (10) represents the starting point for the
derivation of the recursion relations for scalar integrals.

We have obtained the fundamental set of recursion rela-
tions by choosing the arbitrary constants zi so as to satisfy
the following system of linear equations:

∑N

i=1
(ri − rj)2zi = C, j = 1, . . . , N, (12)

where C is an arbitrary constant. Introducing the notation
rij = (ri − rj)2, the system (12) may be written in matrix
notation as


0 r12 . . . r1N

r12 0 . . . r2N

...
...

. . .
...

r1N r2N . . . 0







z1

z2
...

zN


 =




C

C
...
C


 . (13)

It should be pointed out that the expression of the
type (10) and the system of the type (13), for the case
of massive propagators (Ai = (l + ri)2 − m2

i + iε) [5] can
simply be obtained from the relation given above by making
a change rij → rij−m2

i −m2
j . Consequently, considerations

performed for the massive case [5,6] apply to the massless
case, and vice versa.

It should be mentioned that, in the existing literature,
the constant C used to be chosen as a real number differ-
ent from zero. However, it is precisely this fact that, at the
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end, leads to the breakdown of the existing scalar reduc-
tion methods. Namely, for some kinematics (e.g. collinear
on-shell external lines) the system (13) has no solution for
C �= 0. However, if the possibility C = 0 is allowed, the sys-
tem (13) will have a solution regardless of kinematics. This
makes it possible to obtain additional reduction relations
and formulate methods applicable to arbitrary number of
external lines and to arbitrary kinematics.

If (12) is taken into account, and after using the rela-
tion [2]

−
∑N

j=1
νjI

N
0 (D; {νk+δkj}) =

(
4πµ2)−1

IN
0 (D−2; {νk}),

(14)
which can be easily proved from the representation (7), the
relation (10) reduces to

C IN
0 (D − 2; {νk}) =

N∑
i=1

ziI
N
0 (D − 2; {νk − δki})

+
(
4πµ2)


D − 1 −

N∑
j=1

νj


 z0I

N
0 (D; {νk}), (15)

where zi are given by the solution of the system (12), and
the infinitesimal part proportional to iε has been omitted.
This is a generalized form of the recursion relation which
connects the scalar integrals in a different number of di-
mensions [3–7]. The use of the relation (15) in practical
calculations depends on the form of the solution of the
system of equations (12). For general considerations, it is
advantageous to write the system (12) in the following way:



0 1 1 . . . 1
1 0 r12 . . . r1N

1 r12 0 . . . r2N

...
...

...
. . .

...
1 r1N r2N . . . 0







−C

z1

z2
...

zN




=




z0

0
0
...
0




. (16)

In writing (16), we have taken into account the fact that
z0 =

∑N
i=1 zi. In this way, the only free parameter is z0

and by choosing it in a convenient way, one can always
find the solution of the above system and, consequently,
be able to use the recursion relations (15).

In the literature, for example in [5–7], the recursion
relations are obtained by inserting the general solution of
the system (12), i.e. the system (16), into the relation (15).
The recursion relations thus obtained are of limited prac-
tical use if the matrices of the mentioned systems are very
singular. This happens when there are either two or more
collinear external lines or, in general, for N > 6. When
this is the case, the analysis of the general coefficient of
the recursion becomes very complicated and in many cases
unmanageable. There are cases when all coefficients vanish.
As stated in [6], for N ≥ 7, owing to the drastic reduc-
tion of the recurrence relations these cases need a separate
investigation. In addition, the above-mentioned problems
with C �= 0 appear. To avoid these problems, a different

approach to recursion relations can be taken. It is based
on the fact, that finding any solution of the systems of
equations mentioned above makes it possible to perform
the reduction. Being forced to use computers, it is very
convenient and important that the reduction procedure be
organized in a such a way that the recursion relations are
classified and used depending on the form of the solutions
of the above systems. If this is done, the increased singular-
ity of the kinematic determinants turns out to be working
in our favour by making it easy to find a solution of the
systems of linear equations relevant to the reduction.

In the following we frequently refer to two determinants,
for which we introduce the following notation: for the de-
terminant of the system (13) we introduce det(RN ), while
for the determinant of the system (16) we use det(SN ). De-
pending on whether the kinematic determinants det(RN )
and det(SN ) are equal to zero or not, we distinguish four
different types of recursion relations following from (15).
Before proceeding to consider various cases, note that in
the case when det(S) �= 0, we have

C = −z0
det(RN )
det(SN )

. (17)

It should be mentioned that for some of the recursion
relations presented below one can find similar expressions
in the literature. For reasons of clearness, connections of the
relations given below with those existing in the literature
are commented upon after the analysis of all possible cases
has been considered.

Let us now discuss all possible cases separately.

4.1 Case I: det(SN) �= 0, det(RN) �= 0

The most convenient choice in this case is z0 = 1. It follows
from (17) that C �= 0, so that the recursion relation (15)
can be written in the following form:

IN
0 (D; {νk}) =

1
4πµ2

(
D − 1 −

∑N

j=1
νj

)−1

(18)

×
[
C IN

0 (D − 2; {νk}) − ∑N
i=1 ziI

N
0 (D − 2; {νk − δki})

]
.

As it is seen, this recursion relation connects the scalar
integral in D dimensions with the scalar integrals in D −2
dimensions and can be used to reduce the dimensionality
of the scalar integral.

Since det(RN ) �= 0, some more recursion relations can
be directly derived from (10). By directly choosing the
constants zi in (10) in such a way that zi = δik, for k =
1, . . . , N , we arrive at a system of N equations which is
always valid:

N∑
j=1

(rk − rj)2νjI
N
0 (D; {νi + δij})

=
N∑

j=1

νjI
N
0 (D; {νi + δij − δik}) (19)
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−

D −

N∑
j=1

νj


 IN

0 (D; {νi}), k = 1, . . . , N.

In the system (19) we have again disregarded the non-
essential infinitesimal termproportional to iε. Thematrix of
the system (19) is the same as the matrix of the system (12),
whose determinant is different from zero, so that the sys-
tem (19) can be solved with respect to IN

0 (D; {νi + δij}),
j = 1, . . . , N . The solutions represent the recursion rela-
tions which can be used to reduce the powers of the propa-
gators in the scalar integrals. Making use of these relations
and the relation (18), each scalar integral IN

0 (D; {νi}) be-
longing to the type for which det(SN ) �= 0, det(RN ) �= 0
can be represented as a linear combination of integrals
IN
0 (D′; {1}) and integrals with the number of propagators

which is less than N . For the dimension D′, one usually
chooses 4 + 2ε, where ε is the infinitesimal parameter reg-
ulating the divergences. Even in the case when one starts
with D < D′, one can make use of the recursion (18) to
change from the dimension D to the dimension D′.

In addition to the two sets of recursion relations pre-
sented above, by combining them one can obtain an addi-
tional and very useful set of recursion relations. This set
at the same time reduces D and νi in all terms. By adding
and subtracting the expression δjkIN

0 (D; {νi + δij − δik)
in the first term on the right-hand side of the system (19)
and making use of the relation (14), one finds

N∑
j=1

(rk − rj)2νjI
N
0 (D; {νi + δij})

= − (
4πµ2)−1

IN
0 (D − 2; {νi − δik}) (20)

−

D − 1 −

N∑
j=1

νj


 IN

0 (D; {νi}), k = 1, . . . , N.

The solution of this system of equations can in principle
be used for reducing the dimension of the integral and the
propagator powers. However, a much more useful set of the
recursion relations is obtained by combining (20) and (18).
Expressing the second term on the right-hand side of (20)
with the help of (18) leads to

N∑
j=1

(rk − rj)2νjI
N
0 (D; {νi + δij})

=
(
4πµ2)−1


 N∑

j=1

(zj − δjk)IN
0 (D − 2; {νi − δij})

− CIN
0 (D − 2; {νi})


 , k = 1, . . . , N, (21)

where zi and C represent solutions of the system (16)
for z0 = 1. Solutions of the system (21) represent the
recursion relations which, at the same time, reduce (make

smaller) the dimension and the powers of the propagators
in all terms (which is very important). As such, they are
especially convenient for making a rapid reduction of the
scalar integrals which appear in the tensor decomposition
of high-rank tensor integrals.

4.2 Case II: det(SN) �= 0, det(RN) = 0

The most convenient choice in this case is z0 = 1. Unlike
in the preceding case, it follows from (17) that C = 0, so
that the recursion relation (15) can be written as

IN
0 (D; {νk}) =

1

4πµ2
(
D − 1 − ∑N

j=1 νj

)

×
[
−

∑N

i=1
ziI

N
0 (D − 2; {νk − δki})

]
. (22)

It follows from (22) that it is possible to represent each in-
tegral of this type as a linear combination of scalar integrals
with the number of propagators being less than N .

4.3 Case III: det(SN) = 0, det(RN) �= 0

This possibility arises only if the first row of the matrix of
the system (16) is a linear combination of the remaining
rows. Then, the system (16) has a solution only for the
choice z0 = 0. With this choice, the remaining system of
equations reduces to the system (12), where the constant C
can be chosen at will. After the parameter C is chosen, the
constants zi are uniquely determined. Thus the recursion
relation (15) with the choice C = 1 leads to

IN
0 (D; {νk}) =

∑N

i=1
ziI

N
0 (D; {νk − δki}). (23)

Consequently, as in the preceding case, the scalar inte-
grals of the type considered can be represented as a lin-
ear combination of scalar integrals with a smaller number
of propagators.

4.4 Case IV: det(SN) = 0, det(RN) = 0

Unlike in the preceding cases, in this case two different
recursion relations arise. To derive them, we proceed by
subtracting the last, (N +1)th, equation of the system (16)
from the second, third, . . . and Nth equation, respectively.
As a result, we arrive at the following system of equations:



0 1 1 . . . 1
0 −r1N r12 − r2N . . . r1N

0 r12 − r1N −r2N . . . r2N

...
...

...
. . .

...
0 r1,N−1 − r1N r2,N−1 − r2N . . . rN−1,N

1 r1N r2N . . . 0
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×




−C

z1

z2
...

zN−1

zN




=




z0

0
0
...
0
0




. (24)

As it is seen, the first N equations of the above system form
a system of equations in which the constant C does not
appear, and which can be used to determine the constants
zi, i = 1, . . . , N . The fact that det(SN ) = 0 implies that
the determinant of this system vanishes. Therefore, for the
system in question to be consistent (for the solution to
exist), the choice z0 = 0 has to be made. Consequently,
the solution of the system, zi (i = 1, 2, . . . , N), will contain
at least one free parameter. Inserting this solution into the
last, (N + 1)th, equation of the system (24), we obtain

∑N

i=1
riNzi = C . (25)

Now, by arbitrarily choosing the parameter C, one of the
free parameters on the left-hand side can be fixed.

Sometimes (for instance, when there are collinear ex-
ternal lines) the left-hand side of (25) vanishes explicitly,
although the solution for zi contains free parameters. In
this case the choice C = 0 has to be made.

Therefore, corresponding to the case when det(SN )=
det(RN ) = 0, one of the following two recursion rela-
tions holds:

IN
0 (D; {νk}) =

∑N

i=1
ziI

N
0 (D; {νk − δki}), (26)

obtained from (15) by setting z0 = 0 and C = 1, or

0 =
∑N

i=1
ziI

N
0 (D; {νk − δki}), (27)

obtained from (15) by setting z0 = 0 and C = 0.
In the case (26), it is clear that the integral with N

external lines can be represented in terms of the integrals
with N − 1 external lines. What happens, however, in the
case (27)? With no loss of generality, we can take z1 �= 0.
The relation (27) can then be written in the form

z1I
N
0 (D; {νk}) = −

∑N

i=2
ziI

N
0 (D; {νk+δk1−δki}). (28)

We can see that, in this case too, the integral with N ex-
ternal lines can be represented in terms of the integrals
with N − 1 external lines. In this reduction,

∑N
i=1 νi re-

mains conserved.
Based on the above considerations, it is clear that in

all the above cases with the exception of det(SN ) �= 0,
det(RN ) �= 0, the integrals with N external lines can be
represented in terms of the integrals with smaller number
of external lines. Consequently, then, there exists a funde-
mantal set of integrals in terms of which all integrals can
be represented as a linear combination.

Before moving on to determine a fundamental set of
integrals, let us briefly comment on the recursion relations

for scalar integrals that can be found in the literature.
As we see below, det(SN ) is proportional to the Gram
determinant. All recursion relations for which the Gram
determinant does not vanish are well known. Thus the re-
lation of the type (18) can be found in [3–7], while the
solutions of the systems (19) and (21) correspond to the
recursion relations (28) and (30), respectively, given in [6].
Even though Case II also belongs to the class of cases for
which the Gram determinant is different from zero, the
system (13) has no solution for C �= 0. This is a reason
why the problem with using recursion relations appears in
all approaches in which it is required that C �= 0. This can
be seen from the discussion in [7] (the method is based on
the choice C = 1) where the authors state that the reduc-
tion cannot be done for N = 3 with on-shell external lines,
and for N = 4 when one of the Mandelstam variables s
or t vanishes. Such cases, however, are unavoidable when
obtaining leading-twist NLO PQCD predictions for exclu-
sive processes at large-momentum transfer. On the other
hand, in the approach of [6], where all coefficients of the
recursion are given in terms of det(SN ) and the minors of
the matrix SN , the relation of the type (22) can be ob-
tained ((35) in [6]). Cases III and IV, for which the Gram
determinant vanishes, are of special interest. One of the
most discussed cases in the literature, belonging to Case
III, is N = 6. The recursion relations of the type (23) can
be found in [4–7]. As for Case IV, it is especially interesting
owing to the fact that it includes all cases for N ≥ 7. In this
case, the systems (13) and (16) have no unique solution.
Case IV causes a lot of trouble for approaches in which the
recursion coefficients are given in terms of det(SN ) and the
minors of the matrix SN , for example in [6]. The problem
consists in the fact that all determinants vanish, making
it impossible to formulate the recursion relation, so these
cases need a separate investigation. On the other hand,
the method of [7], based on using pseudo-inverse matri-
ces, can be used to construct the most general solution of
the system (13) for the case of the vanishing Gram deter-
minant. Even though the authors of [7] claim that using
their approach one can always perform the reduction of
the N -point function (N ≥ 6), that does not seem to be
the case. Namely, the method in [7] is based on the choice
C = 1, and as it has been shown above, in some cases
belonging to Case IV the system (12) has no solution for
C �= 0, implying that the reduction cannot be performed.
The impossibility of performing the reduction manifests
itself such that v · K · v = 0 (see (15) and (19) in [7]), a
consequence of which is that the recursion coefficients be-
come divergent. The situation of this kind arises regularly
when dealing with integrals containing collinear external
lines, i.e. for exceptional kinematics. The method of [7] has
been obtained for non-exceptional kinematics.

In view of what has been said above, most of the prob-
lems with existing reduction methods appear when dealing
with the integrals with a large number of external lines. In
all considerations in the literature that happens for N > 6.
It is very important to point out that this is valid for the case
when external momenta span the 4-dimensional Minkowski
space. If the dimensionality of the space spanned by exter-
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nal momenta is smaller, the problems start appearing for
smaller N . Even though one can find the statements that
such cases are at the moment of minor physical interest, we
disagree. Namely, as stated earlier, the analysis of exclusive
processes in PQCD, even for simple processes, requires eval-
uation of the diagrams with N ≥ 6. Since these diagrams
contain collinear external lines, the kinematics is limited
to (d < 4)-dimensional subspace. Thus, for example, for
nucleon Compton scattering the integrals with N = 8 ex-
ternal lines contribute and the kinematics is limited to the
3-dimensional subspace. A consequence of this is that the
problem with using existing reduction methods will start
appearing at the level of one-loop N = 5 diagrams.

The reduction method presented in this paper is for-
mulated with an eye on exclusive processes in PQCD. The
main point of the method is that the reduction is defined
in terms of the solution of the linear systems given by (13)
and (16). A consequence of this is that the method is quite
general, very flexible, practical and easily transferred to the
computer program. To perform reduction, one only needs
to find solution of the above systems which can always be
done. A very pleasing feature of this reduction is that the
increased singularity of the kinematic determinants facil-
itates reduction, since finding a solution of the relevant
linear systems becomes easy.

5 On the fundamental set of integrals

We now turn to a determination of the fundamental set of
integrals. To this end, let us first evaluate the determinant
of the system (16), det(SN ), and determine the conditions
under which this kinematic determinant vanishes.

By subtracting the last column from the second, third,
. . . and Nth column, respectively, and then the last row
from the second, third, . . . and Nth row, respectively, we
find that the determinant det(SN ) is given by the follow-
ing expression:

det(SN ) = −det [−2(ri − rN )(rj − rN )] ,

i, j = 1, . . . , N − 1. (29)

As it can be seen, det(SN ) is proportional to the Gram
determinant. Denote by n the dimension of the vector space
spanned by the vectors ri − rN (i = 1, . . . , N − 1). Owing
to the linear dependence of these vectors, the determinant
vanishes when N > n + 1. As in practice we deal with the
4-dimensional Minkowski space, the maximum value for
n equals 4. An immediate consequence of this is that all
integrals with N > 5 can be reduced to the integrals with
N ≤ 5.

In view of what has been said above, all one-loop inte-
grals are expressible in terms of the integrals I3

0 (4+2ε; {1}),
I4
0 (4 + 2ε; {1}), I5

0 (4 + 2ε; {1}), belonging to Case I, and
the general 2-point integrals I2

0 (D′; ν1, ν2), which are sim-
ple enough to be evaluated analytically.

Next, by substituting D = 6 + 2ε, N = 5 and νi = 1
into the recursion relation (15), one finds

C I5
0 (4 + 2ε; {1}) =

5∑
i=1

ziI
5
0 (4 + 2ε; {δkk − δki}) (30)

+
(
4πµ2) (2ε) z0 I5

0 (6 + 2ε; {1}).

Owing to the fact that the integral I5
0 (6 + 2ε; {1}) is IR

finite [4], the relation (30) implies that the N = 5 scalar
integral, I5

0 (4+2ε; {1}), can be expressed as a linear com-
bination of the N = 4 scalar integrals, I4

0 (4+2ε; {1}), plus
a term linear in ε. In massless scalar theories, the term
linear in ε can simply be omitted, with the consequence
that the N = 5 integrals can be reduced to the N = 4
integrals. On the other hand, when calculating in renor-
malizable gauge theories (like QCD), the situation is not
so simple, owing to the fact that the rank P (≤ N) tensor
integrals are required.

In the process of the tensor decomposition and then
reduction of scalar integrals all way down to the fun-
damental set of integrals, there appears a term of the
form (1/ε)I5

0 (4 + 2ε; {1}), which implies that one would
need to know an analytical expression for the integral
I5
0 (4+2ε; {1}), to order ε. Going back to the expression (30),

we notice that all such terms can be written as a linear
combination of the box (4-point) integrals in 4+2ε dimen-
sions and 5-point integrals in 6+2ε dimensions. Therefore,
at this point, the problem has been reduced to calculating
the integral I5

0 (6+2ε; {1}), which is IR finite, and need to
be calculated to order O(ε0). It is an empirical fact [4–7,15]
that in the final expressions for physical quantities all terms
containing the integral I5

0 (6 + 2ε; {1}) always combine so
that this integral ends up being multiplied by the coef-
ficients O(ε), and, as such, can be omitted in one-loop
calculations. A few theoretical proofs of this fact can be
found in the literature [4,6,7], but, to the best of our knowl-
edge, the proof for the case of exceptional kinematics is
still missing. That being the case, in concrete calculations
(to be sure and to have all the steps of the calculation un-
der control), it is absolutely necessary to keep track of all
the terms containing the integral I5

0 (6+2ε; {1}), add them
up and check whether the factor multiplying it is of or-
der O(ε). Even though the experience gained in numerous
calculations shows that this is so, a situation in which the
integral I5

0 (6+2ε; {1}) would appear in the final result for
a physical quantity accompanied by a factor O(1) would
not, from a practical point of view, present any problem.
Namely, being IR finite, although extremely complicated
to be evaluated analytically, the integral I5

0 (6 + 2ε; {1})
can always, if necessary, be evaluated numerically.

Based on the above considerationswemay conclude that
all one-loop integrals occurring when evaluating physical
processes in massless field theories can be expressed in
terms of the integrals

I2
0 (D′; ν1, ν2), I3

0 (4 + 2ε; 1, 1, 1), I4
0 (4 + 2ε; 1, 1, 1, 1).

These integrals, therefore, constitute a minimal set of
fundamental integrals.
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In view of the above discussion, we conclude that the set
of fundamental integrals is comprised of integrals with two,
three and four external lines. Integrals with two external
lines can be calculated analytically in an arbitrary number
of dimensions andwith arbitrary powers of the propagators.
They do not constitute a problem. As far as the integrals
with three and four external lines are concerned, depending
on how many kinematic variables vanish, we distinguish
several different cases. We now show that in the case N = 3
we have only one fundamental integral, while in the case
corresponding to N = 4 there are six integrals. For this
purpose, we make use of the vanishing of the kinematic
determinants det(RN ) and det(SN ).

5.1 The general scalar integral for N = 2

According to (5), the general massless scalar 2-point inte-
gral in D space-time dimensions is of the form

I2
0 (D; ν1, ν2) ≡ (

µ2)2−D/2
∫

dDl

(2π)D

1
Aν1

1 Aν2
2

· (31)

The closed form expression for the above integral, valid for
arbitrary D = n + 2ε, and arbitrary propagator powers ν1
and ν2, is given by

I2
0 (n + 2ε; ν1, ν2) =

(
4πµ2)2−n/2

(−1)ν1+ν2

× (−p2 − iε
)n/2−ν1−ν2 Γ (ν1 + ν2 − n/2 − ε)

Γ (−ε)

× Γ (n/2 − ν1 + ε)
Γ (1 + ε)

Γ (n/2 − ν2 + ε)
Γ (1 + ε)

1
Γ (ν1)Γ (ν2)

× Γ (2 + 2ε)
Γ (n − ν1 − ν2 + 2ε)

I2
0 (4 + 2ε, 1, 1) , (32)

where

I2
0 (4 + 2ε; 1, 1) (33)

=
i

(4π)2

(
−p2 + iε

4πµ2

)ε
Γ (−ε) Γ 2 (1 + ε)

Γ (2 + 2ε)
.

It is easily seen that in the formalism of the dimensional
regularization the above integral vanishes for p2 = 0.

5.2 The scalar integrals for N = 3

The massless scalar one-loop triangle integral in D = 4+2ε
dimensions is given by

I3
0 (4 + 2ε, {1}) =

(
µ2)−ε

∫
d4+2εl

(2π)4+2ε

1
A1A2A3

. (34)

Making use of the representation (7), and introducing the
external masses p2

i = m2
i (i = 1, 2, 3), the integral (34) can

be written in the form

I3
0 (4 + 2ε, {1}) =

−i
(4π)2

Γ (1 − ε)
(4πµ2)ε

×
∫ 1

0
dx1dx2dx3 δ(x1 + x2 + x3 − 1) (35)

× (−x1x2 m2
2 − x2x3 m2

3 − x3x1 m2
1 − iε

)ε−1
.

It is evident that the above integral is invariant under
permutations of the external masses m2

i . Depending on
the number of external massless lines, and using the above-
mentioned symmetry, there are three relevant special cases
of the above integral. We denote them by

I1m
3 ≡ I3

0
(
4 + 2ε, {1}; 0, 0, m2

3
)
, (36)

I2m
3 ≡ I3

0
(
4 + 2ε, {1}; 0, m2

2, m
2
3
)
, (37)

I3m
3 ≡ I3

0
(
4, {1}; m2

1, m
2
2, m

2
3
)
. (38)

The integrals I1m
3 and I2m

3 are IR divergent and need to
be evaluated with ε > 0, while the integral I3m

3 is finite
and can be calculated with ε = 0.

Now, it is easily found that the determinants of the
systems of equations (13) and (16) are, for N = 3, given by

det(R3) = 2m2
1m

2
2m

2
3, (39)

det(S3) =
(
m2

1
)2

+
(
m2

2
)2

+
(
m2

3
)2

− 2m2
1m

2
2 − 2m2

1m
2
3 − 2m2

2m
2
3, (40)

As is seen from (39), if at least one of the external lines is
on mass-shell, the determinant det(R3) vanishes. Conse-
quently, using the recursion relations (Case II or IV) the
integrals I1m

3 and I2m
3 can be reduced to the integrals with

two external lines. Therefore, we conclude that among the
scalar integrals with three external lines the integral I3m

3
is the only fundamental one.

The result for this integral is well known [12, 13, 16].
In [12] it is expressed in terms of the dimensionless quan-
tities of the form

x1,2 =
1
2

(41)

×

1 − m2

1

m2
2

+
m2

3

m2
2

±
√(

1 − m2
1

m2
2

− m2
3

m2
2

)2

− 4
m2

1

m2
2

m2
3

m2
2




and, being proportional to 1/(x1 − x2), appears to have a
pole at x1 = x2. It appears that the final expression [12]
is not well defined when x1 = x2.

On the basis of (40) and (41), one finds that

x1 − x2 =
1

m2
2

√
det(S3).

This equation implies that when x1 − x2 = 0, instead
of examining the limit of the general expression in [12],
one can utilize the reduction relations (23) (corresponding
to det(R3) �= 0 and det(S3) = 0) to reduce the IR finite
integral with three external lines, I3m

3 , to the integrals with
two external lines.
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5.3 The scalar integrals for N = 4

The massless scalar one-loop box integral in D = 4 + 2ε
space-time dimensions is given by

I4
0 (4 + 2ε, {1}) =

(
µ2)−ε

∫
d4+2εl

(2π)4+2ε

1
A1A2A3A4

. (42)

Making use of (7), introducing the external “masses” p2
i =

m2
i (i = 1, 2, 3, 4), and the Mandelstam variables s = (p1 +

p2)2 and t = (p2 + p3)2, the integral (42) becomes

I4
0 (4 + 2ε, {1}) =

i
(4π)2

Γ (2 − ε)
(4πµ2)ε

∫ 1

0
dx1dx2dx3dx4

× δ(x1 + x2 + x3 + x4 − 1) (−x1x3 t − x2x4 s

− x1x2 m2
2 − x2x3 m2

3 − x3x4 m2
4 − x1x4 m2

1 − iε
)ε−2

.

(43)

Introducing the following set of ordered pairs:

(s, t),
(
m2

1, m
2
3
)
,
(
m2

2, m
2
4
)
, (44)

one can easily see that the integral (43) is invariant un-
der the permutations of ordered pairs, as well as under
the simultaneous exchange of places of elements in any
two pairs.

The determinants of the coefficient matrices of the sys-
tems of equations (13) and (16), corresponding to the above
integral, are

det(R4) = s2t2 +
(
m2

1m
2
3
)2

+
(
m2

2m
2
4
)2

− 2stm2
1m

2
3 − 2stm2

2m
2
4 − 2m2

1m
2
2m

2
3m

2
4 ,(45)

det(S4) = 2
[
st

(
m2

1 + m2
2 + m2

3 + m2
4 − s − t

)
(46)

+ m2
2m

2
4
(
s + t + m2

1 + m2
3 − m2

2 − m2
4
)

+ m2
1m

2
3
(
s + t − m2

1 − m2
3 + m2

2 + m2
4
)

− s
(
m2

1m
2
2 + m2

3m
2
4
) − t

(
m2

1m
2
4 + m2

2m
2
3
)]

.

By looking at the expression for det(R4) given in (45)
it follows that all box integrals I4

0 that are characterized by
the fact that in each of the ordered pairs in (44) at least one
kinematic variable vanishes, are reducible. Therefore, for
a box integral to be irreducible, it is necessary that both
kinematic variables in at least one of the ordered pairs
should be different from zero. Owing to the symmetries
valid for the box integrals it is always possible to choose
that pair to be (s, t).

Taking into account the symmetries, and the number of
external massless lines, there are six potentially irreducible
special cases of the integral (43). Adopting the notation
of [4], we denote them by

I4m
4 ≡ I4

0
(
4, {1}; s, t, m2

1, m
2
2, m

2
3, m

2
4
)
, (47)

I3m
4 ≡ I4

0
(
4 + 2ε, {1}; s, t, 0, m2

2, m
2
3, m

2
4
)
, (48)

I2mh
4 ≡ I4

0
(
4 + 2ε, {1}; s, t, 0, 0, m2

3, m
2
4
)
, (49)

I2me
4 ≡ I4

0
(
4 + 2ε, {1}; s, t, 0, m2

2, 0, m2
4
)
, (50)

I1m
4 ≡ I4

0
(
4 + 2ε, {1}; s, t, 0, 0, 0, m2

4
)
, (51)

I0m
4 ≡ I4

0 (4 + 2ε, {1}; s, t, 0, 0, 0, 0, ) , (52)

with all kinematic variables appearing above being different
from zero. The results for these integrals are well known [4,
11,12,17].

The integrals (48)– (52) are IR divergent, and as such
need to be evaluated with ε > 0, while the integral (47)
is finite and can be calculated in D = 4. The results for
these integrals, obtained in [11, 12] for arbitrary values of
the relevant kinematic variables, and presented in a simple
and compact form, have the following structure:

IK
4 (s, t; m2

i ) =
i

(4π)2
Γ (1 − ε)Γ 2(1 + ε)

Γ (1 + 2ε)
1√

det
(
RK

4

)

×
[

GK
(
s, t; ε; m2

i

)
ε2 + HK

(
s, t; m2

i

)]
+ O(ε),

K ∈ {0m, 1m, 2me, 2mh, 3m, 4m} . (53)

The IR divergences (both soft and collinear) of the integrals
are contained in the first term within the square brackets,
while the second term is finite. The function GK(s, t; ε; m2

i )
is represented by a sum of powerlike terms, it depends on
ε and is finite in the ε → 0 limit. As for the function
HK(s, t; m2

i ), it is given in terms of dilogarithm functions
and constants. In the above, det(RK

4 ) is the determinant
corresponding to the integral IK

4 given in (47)– (52).
For the purpose of numerical integration, it is very

useful to have the exact limit of the integral IK
4 when

det(RK
4 ) → 0. This limit can be determined in an elegant

manner by noticing that for det(RK
4 ) = 0 the reduction

relations corresponding to Cases II and IV apply, making
it possible to represent the box integral IK

4 as a linear
combination of the triangle integrals. This result can be
made use of to combine box and triangle integrals (or pieces
of these integrals) with the aim of obtaining numerical
stability of the integrand [9].

The integrals (47)– (52) are irreducible only if the corre-
sponding kinematic determinant det(RK

4 ) does not vanish.
With the help of the tensor decomposition and the

scalar reduction procedures, any dimensionally regulated
one-loop N -point Feynman integral can be represented as
a linear combination of the integrals:

I2
0 (D′; ν1, ν2),

I3m
3 ,

I4m
4 , I3m

4 , I2mh
4 , I2me

4 , I1m
4 , I0m

4 , (54)

multiplied by tensor structures made from the external
momenta and the metric tensor. The integrals in (54) con-
stitute a fundamental set of integrals. An alternative and
more convenient set of fundamental integrals is obtained
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by noticing that all the relevant box integrals are finite in
D = 6. On the basis of (15), all IR divergent box inte-
grals can be expressed as linear combinations of triangle
integrals in D = 4 + 2ε dimensions and a box integral in
D = 6+2ε dimensions. Next, using the same equation, all
triangle integrals can be decomposed into a finite triangle
integral and 2-point integrals. In the final expression thus
obtained all divergences, IR as well as UV, are contained
in the general 2-point integrals and associated coefficients.
Therefore, an alternative fundamental set of integrals is
comprised of

I2
0 (D′; ν1, ν2),

I3m
3 ,

I4m
4 , J3m

4 , J2mh
4 , J2me

4 , J1m
4 , J0m

4 , (55)

where JK
4 denotes box integrals in D = 6 dimensions,

explicit expressions for which are given in Appendix A. A
characteristic feature of this fundamental set of integrals,
which makes it particularly interesting, is that the integral
I2
0 is the only divergent one, while the rest of integrals

are finite.

6 Conclusion

In this work we have considered one-loop scalar and tensor
Feynman integrals with an arbitrary number of external
lines which are relevant for the construction of multi-parton
one-loop amplitudes in massless field theories.

The main result of this paper is a scalar reduction ap-
proach by which an arbitrary N -point scalar one-loop inte-
gral can be recursively represented as a linear combination
of eight basic scalar integrals with rational coefficients de-
pending on the external momenta and the dimensionality
of space-time, provided the external momenta are kept in
four dimensions. The problem of vanishing of the kinematic
determinants, which is a reflection of the very complex sin-
gularity structure of these integrals, has been solved in an
elegant and transparent manner. Namely, the approach
has been taken according to which instead of solving the
general system of linear equations given in (12), and then
finding the limit, which sometimes does not exist, of the
obtained solution corresponding to a given singular kine-
matic situation, we first obtain and then solve the system
of equations appropriate to the situation being considered.

Our method has been derived without any restrictions
regarding the external momenta. As such, it is completely
general and applicable for arbitrary kinematics. In partic-
ular, it applies to the integrals in which the set of exter-
nal momenta contains subsets comprised of two or more
collinear momenta. This kind of integrals are encountered
when performing leading-twist NLO PQCD analysis of the
hadronic exclusive processes at large-momentum transfer.
Through the tensor decomposition and scalar reduction
presented, any massless one-loop Feynman integral with
generic 4-dimensional momenta can be expressed as a lin-
ear combination of a fundamental set of scalar integrals:
six box integrals in D = 6, a triangle integral in D = 4,

and a general 2-point integral. All the divergences present
in the original integral are contained in the general 2-point
integral and associated coefficients.

In conclusion, the computation of IR divergent one-
loop integrals for an arbitrary number of external lines can
be mastered with the reduction formulas presented above.
The iterative structure makes it easy to implement the
formalism in algebraic computer program. With this work
all the conceptual problems concerning the construction of
multi-parton one-loop amplitudes are thus solved.
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Appendix A

In addition to the explicit calculation, the irreducible box
integrals in D = 6 dimensions can be obtained using the
existing analytical expressions for the irreducible box in-
tegrals in D = 4 + 2ε dimensions and the reduction for-
mula (15). To this end, we substitute D = 6 + 2ε, N = 4,
νi = 1 and C = 1 into the relation (15) and find

I4
0 (6 + 2ε; {1}) =

1
4πµ2(2ε + 1) z0

(56)

×
(

I4
0 (4 + 2ε; {1}) −

4∑
i=1

ziI
4
0 (4 + 2ε; {δkk − δki})

)
.

Note that the IR divergences in D = 4+2ε box integrals
are exactly cancelled by the divergences of the triangle in-
tegrals.

The expressions for the relevant basic massless scalar
box integrals in D = 6 space-time dimensions are listed
below.
The three-mass scalar box integral is

I3m
4

(
D = 6; s, t; m2

2, m
2
3, m

2
4
)

=
i

(4π)2
1

4πµ2 (57)

× h3m

{
1
2

ln
(

s + iε
m2

3 + iε

)
ln

(
s + iε

m2
4 + iε

)

+
1
2

ln
(

t + iε
m2

2 + iε

)
ln

(
t + iε

m2
3 + iε

)

+ Li2

(
1 − m2

2 + iε
t + iε

)
+ Li2

(
1 − m2

4 + iε
s + iε

)

+ Li2
[
1 − (s + iε) f3m

]
+ Li2

[
1 − (t + iε) f3m

]
− Li2

[
1 − (m2

2 + iε) f3m
] − Li2

[
1 − (m2

4 + iε) f3m
]

− 1
2

(
t − m2

2 − m2
3 + 2m2

2m
2
3

t − m2
4

st − m2
2m

2
4

)
I3

(
m2

2, m
2
3, t

)

− 1
2

(
s − m2

3 − m2
4 + 2m2

3m
2
4

s − m2
2

st − m2
2m

2
4

)
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× I3
(
m2

3, m
2
4, s

)}
.

The adjacent (“hard”) two-mass scalar box integral is

I2mh
4

(
D = 6; s, t; m2

3, m
2
4
)

=
i

(4π)2
1

4πµ2

× h2mh

{
1
2

ln
(

s + iε
m2

3 + iε

)
ln

(
s + iε

m2
4 + iε

)

+ Li2

(
1 − m2

4 + iε
s + iε

)
− Li2

(
1 − m2

3 + iε
t + iε

)

+ Li2
[
1 − (s + iε) f2mh

]
+ Li2

[
1 − (t + iε) f2mh

]
− Li2

[
1 − (

m2
4 + iε

)
f2mh

]
− 1

2

(
s − m2

3 − m2
4 + 2

m2
3m

2
4

t

)
I3

(
m2

3, m
2
4, s

)}
. (58)

The opposite (“easy”) two-mass scalar box integral is

I2me
4

(
D = 6; s, t; m2

2, m
2
4
)

=
i

(4π)2
1

4πµ2 (59)

× h2me
{
Li2

[
1 − (s + iε)f2me

]
+ Li2

[
1 − (t + iε)f2me

]
− Li2

[
1 − (

m2
2 + iε

)
f2me

] − Li2
[
1 − (

m2
4 + iε

)
f2me

]}
.

The one-mass scalar box integral is

I1m
4

(
D = 6; s, t; m2

4
)

=
i

(4π)2
1

4πµ2

× h1m

{
Li2

[
1 − (s + iε)f1m

]
+ Li2

[
1 − (t + iε)f1m

]

− Li2
[
1 − (m2

4 + iε)f1m
] − π2

6

}
. (60)

The zero-mass (massless) scalar box integral is

I0m
4 (D = 6; s, t) =

i
(4π)2

1
4πµ2 h0m (61)

×
{

Li2
[
1 − (s + iε)f0m

]
+ Li2

[
1 − (t + iε)f0m

] − π2

3

}
,

where

hK =


−2

√
det

(
RK

4

)
det

(
SK

4

)

 , (62)

and
i

(4π)2
I3(a, b, c) = I3m

3 (D = 4; a, b, c) . (63)

The functions appearing above are given by

f3m = f2me =
s + t − m2

2 − m2
4

st − m2
2m

2
4

,

f2mh = f1m =
s + t − m2

4

st
,

f0m =
s + t

st
,

h3m =
(

s + t − m2
2 − m2

3 − m2
4

+ m2
3
m2

2t + m2
4s − 2m2

2m
2
4

st − m2
2m

2
4

)−1

,

h2mh =
(

s + t − m2
3 − m2

4 +
m2

3m
2
4

t

)−1

,

h2me =
(
s + t − m2

2 − m2
4
)−1

,

h1m =
(
s + t − m2

4
)−1

,

h0m = (s + t)−1
.

Appendix B

As an illustration of the tensor decomposition and scalar
reduction methods, we evaluate an one-loop 6-point Feyn-
man diagram shown in Fig. 2.

Note that, due to the kinematics which is bounded to 3-
dimensional Minkowski subspace there are no four linearly
independent 4-vectors. Consequently, this diagram is of
the complexity of the 7-point one-loop diagram with 4-
dimensional external kinematics. We choose this particular
diagram because of the compactness of intermediate and
final expressions.

This is one (out of 462) diagrams contributing to the
NLO hard-scattering amplitude for the exclusive process
γ(k1, ε1) γ(k2, ε2) → π+(P+) π−(P−) (with both photons
on-shell) at large-momentum transfer.

In the γ γ center-of-mass frame, the 4-momenta of the
incoming and outgoing particles are

k1, 2 =
√

s/2 (1,∓ sin θCM, 0,± cos θCM),

P± =
√

s/2 (1, 0, 0,±1), (64)

while the polarization states of the photons are

ε±
1 = ε∓

2 = ∓1/
√

2 (0, cos θCM,±i, sin θCM), (65)
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Fig. 2. One of the diagrams contributing to the hard-scattering
amplitude of the process γ γ → π+ π− at NLO
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where
√

s is the total center-of-mass energy of the γ γ
system (or the invariant mass of the π+ π− pair).

For example, taking θCM = π/2 and assuming that
the photons have opposite helicities, the amplitude corre-
sponding to the Feynman diagram of Fig. 2 is proportional
to the integral

I =

(
µ2

)−ε

2

∫
d4+2εl

(4π)4+2ε
Tr [γµγ5 /P+γµ(/l + /p3)/ε1(/l − /p4)

· γνγ5 /P−γν(/l + /p5)/ε2(/l + /p6)] (66)

× 1
l2(l + p3)2(l − p4)2(l + p5)2(l + p6)2(l + p7)2

,

with the momenta pi (i = 1, . . . , 7)

p1 = x P+, p2 = x P+, p3 = k1 − y P−, p4 = y P−,

p5 = y P−, p6 = y P− − k2, p7 = x P+ + y P− − k2.

The quantities x and x ≡ 1 − x (y and y ≡ 1 − y) are the
fractions of the momentum P+ (P−) shared between the
quark and the antiquark in the π+ (π−).

With the aim of regularizing the IR divergences, the
dimension of the integral is taken to be D = 4 + 2 ε.

The integral I is composed of one-loop 6-point tensor
integrals of rank 0, 1, 2, 3 and 4. Performing the tensor
decomposition and evaluating the trace, we obtain the in-
tegral I in the form

I = −2(1 + ε)2

×
[
24 s3 xx y y

(
4 π µ2)4

×I6
0 (12 + 2 ε, {1, 1, 1, 1, 1, 5})

+ 6 s3 y y
(
4 π µ2)4

I6
0 (12 + 2 ε, {1, 4, 1, 1, 2, 1})

+ 2 s3 y (y − y)
(
4 π µ2)4

×I6
0 (12 + 2 ε, {1, 3, 2, 1, 2, 1})

+ 8 s3 y y
(
4 π µ2)4

I6
0 (12 + 2 ε, {1, 3, 1, 1, 3, 1})

+ 2 s3 x y y
(
4 π µ2)4

I6
0 (12 + 2 ε, {1, 2, 2, 2, 1, 2})

+ s3 y (y − y)
(
4 π µ2)3

I6
0 (10 + 2 ε, {1, 2, 2, 1, 2, 1})

+ s2 y y (1 + ε)
(
4 π µ2) I6

0 (6 + 2 ε, {1, 1, 1, 1, 1, 1})

+ s (1 + ε) (2 + ε)
(
4 π µ2)2

×I6
0 (8 + 2 ε, {1, 1, 1, 1, 1, 1})

+ . . . 75 similar terms
]
. (67)

Next, performing the scalar reduction using the method
described in the paper, we arrive at the following expression
for the integral written in terms of the basic integrals:

I = 8 (1 + ε)2

×
{(

4 π µ2) [ ε

x
I1m
4 (6 + 2 ε; −s/2,−s y/2; −s y/2)

+
1 + ε

x
I1m
4 (6 + 2 ε; −s y/2,−s/2; −s y/2)

+
(
1 + ε

(
1 − x

x

))
×I1m

4 (6 + 2 ε; −s x/2,−s y/2; −s (x y + x y) /2)

+
(
−x

x
+ ε

(
1 − x

x

))
×I2me

4 (6 + 2 ε; −s x/2,−s y/2;

−s/2,−s (x y + x y) /2)
]

+
1
s

[
1

(x − x) y

(
2 x

ε (x − x)
+ 2 − x

x

)

×I2 (4 + 2 ε; −s x/2)

+
1

(x − x) y

(
2 x

ε (x − x)
+ 2 − x

x

)
I2 (4 + 2 ε; −s x/2)

+
1

(y − y) x

(
2 y

ε (y − y)
+ 2 − y

y

)
I2 (4 + 2 ε; −s y/2)

+
1

(y − y) x

(
2 y

ε (y − y)
+ 2 − y

y

)
I2 (4 + 2 ε; −s y/2)

+

(
(1 − x y − 3 y x) (1 − y x − 3 x y)

xx y y (x − x) (y − y)

+
2 (x y + x y) (8 xx y y − xx − y y)

ε x x y y (x − x)2 (y − y)2

)

×I2 (4 + 2 ε; −s (x y + x y) /2)

+
(x y + x y)

xx y y
I2 (4 + 2 ε; −s/2)

]}
. (68)

Here, I2 is the 2-point scalar integral in D = 4 + 2 ε with
νi = 1, while I1m

4 and I2me
4 are box scalar integrals in

D = 6 + 2 ε. Analytic expressions for these integrals are
given in the Appendix A. Expanding (68) up to orderO(ε0),
we finally get

I =
i

(4 π)2
8
s

{
− 1

x y
Li2 (x − x) − 1

y x
Li2 (x − x) (69)

− 1
y x

Li2 (y − y) − 1
x y

Li2 (y − y)

+
x y + y x

xx y y
Li2 (− (x − x) (y − y))

+
π2

6
x y + y x

xx y y
− x y + x y

xx y y
ln
(

s

2 µ2

)
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+
(x − 2 x)

x y (x − x)
ln

(
s x

2 µ2

)
+

(x − 2 x)
x y (x − x)

ln
(

s x

2 µ2

)

+
(y − 2 y)

x y (y − y)
ln

(
s y

2 µ2

)
+

(y − 2 y)
x y (y − y)

ln
(

s y

2 µ2

)

− x

y (x − x)2
ln2

(
s x

2 µ2

)
− x

y (x − x)2
ln2

(
s x

2 µ2

)

− y

x (y − y)2
ln2

(
s y

2 µ2

)
− y

x (y − y)2
ln2

(
s y

2 µ2

)

− (1 − x y − 3 y x) (1 − y x − 3 x y)
xx y y (x − x) (y − y)

× ln
(

s (x y + x y)
2 µ2

)

− (x y + x y) (8 xx y y − xx − y y)
xx y y (x − x)2 (y − y)2

× ln2
(

s (x y + x y)
2 µ2

)

− 2
ε̂

[
x

y (x − x)2
ln

(
s x

2 µ2

)
+

x

y (x − x)2
ln

(
s x

2 µ2

)

+
y

x (y − y)2
ln

(
s y

2 µ2

)
+

y

x (y − y)2
ln

(
s y

2 µ2

)

+
(x y + x y) (8 xx y y − xx − y y)

xx y y (x − x)2 (y − y)2

× ln
(

s (x y + x y)
2 µ2

)]}
,

where 1/ε̂ = 1/ε + γ − ln(4 π).
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